
A Morse Membrane Boltzmann Machine Model With Applications

in Cluster Analysis

XIYU LIU

Shandong Normal University

School of Management Science and Engineering

Jinan, Shandong 250014

CHINA

sdxyliu@163.com

JIE XUE

Shandong Normal University

School of Management Science and Engineering

Jinan, Shandong 250014

CHINA

xiaozhuzhu1113@163.com

Abstract: The purpose of this paper is to propose a new kind of P system on chain structure. We present the

basic discrete Morse structure, membrane structures on complexes, objects with positive and negative charges and

communication rules on chains. The computation completeness of Morse P system is proved by simulation of

register machine. The process of Boltzmann Machines are implemented by Morse P system. A new clustering

technique is described on Morse P system based Boltzmann Machines. Examples are given to show the effect of

the algorithm.

Key–Words: Cluster analysis, membrane computing, discrete Morse theory, chain structure.

1 Introduction

Membrane computing is a new class of distributed and

parallel computing devices which is initiated by Păun

at the end of 1998, as an attempt to formulate models

from the functioning of living cells [1]. One main ad-

vantage of the new computing models lies in its huge

inherent parallelism which has drawn great attention

from researchers. A number of successful applica-

tions have been reported in wide areas such as biolo-

gy, bio-medicine, linguistics, computer graphics, eco-

nomics, approximate optimization, cryptography, and

so forth.

There are four main streams [1] in the research of

membrane computing. They are design of new P sys-

tems, computational power, combination of P systems

and biochemistry, and implementation of P systems.

Up to now, there are many types of P systems such

as the cell-like P systems, tissue-like P systems, spik-

ing neural P systems [1][2][3]. Extensions of these P

systems include numerical P systems adding integers

to multisets [5], real-time extension of P systems [6].

Also an evolution communication P systems is pro-

posed to measure the communication costs by means

of quanta of energy [7]. Another kind of P system-

s with object processing rules and structure changing

rules is investigated in [8].

Traditionally, Morse theory is a fundamental top-

ic of differential topology and differential geometry

which works on smooth manifolds. It is a great

challenge to develop a discrete Morse structure when

faced with discrete problems. By replacing manifold

with simplices, Forman proposes a discrete Morse

theory [12]. Recently, discrete Morse theory has at-

tracted many researchers because it has been found

applications in triangulations and graphics. In fact,

simplicial complex, the basic data structure in discrete

Morse theory, will prove to be an important extension

of data structure other than trees and graphs.

The Boltzmann machine, introduced by Ackley

D.H., Hinton G.E. and Sejnowski T.J. [13], is a

traditional neural network model using a distribut-

ed knowledge representation and a massively paral-

lel network of simple stochastic computing elements.

Boltzmann machine is widely used in optimization ap-

plications [14]. Many empirical studies have been car-

ried out in graph partitioning problems and the trav-

elling Salesman problem, combinatorial optimization

[9], pattern recognition and so on. Cluster analysis is

a wide area of data analytics with both methodologi-

cal value and applications such as document cluster-

ing [15][16]. However we find there are seldom joint

study of membrane computing, Boltzmann machine

with cluster analysis.

Inspired by the above research, this paper focuses

on the joint study of discrete Morse theory with mem-

brane computing. Our purpose is to propose a P sys-

tem on chain structure. We propose a discrete Morse

structure for a candidate of a class of new P system-

s. We also provide objects with positive and nega-

tive charges. We prove the computation completeness

of Morse P system by simulation of register machine.

Then we use membrane computing in Boltzmann Ma-

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Xiyu Liu, Jie Xue 

E-ISSN: 2224-2856 476 Volume 12, 2017



1a3a

2a

4a

5a

6a

Figure 2.1: A simplicial complex with orientated

faces in R2.

chines, implementing the process of Boltzmann Ma-

chines by Morse P system with positive and negative

objects. Finally, we present cluster analysis by Morse

P system based Boltzmann Machines and give exam-

ples for detailed analyzing.

2 A Morse Membrane Structure

In this section we propose a class of membrane mod-

els based on discrete Morse structures. For simplic-

ity we always assume that we are working in an Eu-

clidean space Rn.

2.1 Simplices with Orientation

A k−simplex (cell) τ is the convex hull of k + 1
affinely independent points denoted by a0, a1, · · · , ak.

The integer k is called dimension of simplex σ, while

a0, a1, · · · , ak are called vertices. A simplex is u-

niquely indicated by its vertices and hence can be

expressed by τ = [a0, a1, · · · , ak], or simply τ =
a0a1 · · · ak. For a simplex τ = [a0, a1, · · · , ak], there

are exactly two orientations induced by permutation

of its vertices. So we will use −τ to denote a cell

with the same set of vertices but opposite orientation

to τ . A complex is a finite collection of non-empty

simplices where each simplex is called its member and

members are well placed (which will be described in

detail later in this section). Figure Fig. 2.1 shows the

orientation of a two dimensional complex.

A face τ1 of a simplex τ is defined as a simplex

generated by a nonempty subset of its vertices denoted

by τ1 < τ . A face τ1 is called a hyperface of τ if

dim τ1 = dim τ − 1 and is denoted by τ1 ≺ τ . In

this case, τ is called the parent of τ1. Two cells τ1
and τ2 are called incident if τ1, τ2 ≺ τ , and τ is called

the coface of τ1 and τ2. Two cells τ1, τ2 are called

neighbors if they share a common hyperface.

A simplicial complex K is a collection of non-

empty simplices for which τ ∈ K and τ1 ≺ τ implies

τ1 ∈ K; and τ1, τ2 ∈ K implies that τ1 ∩ τ2 is ei-

ther empty or a face of both. Denote Kq as the subset

of K containing simplices of dimension q. If τ is a

k−simplex, then the collection of τ and all its faces

form a simplicial complex K, which is called a sim-

ple complex, or simply, a complex.

For a k−dimensional simplicial complex K, Kq

contains its q−dimensional simplices. We always

suppose that each simplex in kq is oriented. A

q−chain is a collection of q−dimensional cells orga-

nized as follows

σq =
∑

i

giτ
q
i , gi ∈ G, τ qi ∈ Kq (2.1)

Here G is an Abelian group. One widely used and

typical group is the integer group J . Another common

group is J − 2 = J mod 2. In the following we will

not specify the group G in general.

The set of q−dimensional chains form a group

which is written by Cq(K). Now we will use

[a0, a1, · · · , âi, · · · , ak] to denote a face of τ where

the vertex ai is eliminated. For σq = a0a1 · · · aq, the

boundary operator is defined by:

∂σq =







0, q = 0
∑q

i=0(−1)i[a0, · · · , âi, · · · , aq],
q > 0

(2.2)

Boundary operator extends to chains in the natu-

ral way. An important property of the boundary oper-

ator is that ∂ ◦∂ = 0 [17]. For a (q− 1)−dimensional

simplex τ q−1 and a q−dimensional simplex τq, define

the relevance operator as follows

r(τ q, τ q−1) =























0, τ q−1 6≺ τ q

1, τ q−1 ≺ τ q

with same orientation

−1, τ q−1 ≺ τ q

with opposite orientation.

(2.3)

Clearly the boundary operator maps Cq(K) into

Cq−1(K).

∂ = ∂q : Cq(K) → Cq−1(K) (2.4)

For convenience of symbol consistency we denote

C−1(K) = 0. Write the kernel of ∂q as Zq(K) =

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Xiyu Liu, Jie Xue 

E-ISSN: 2224-2856 477 Volume 12, 2017



∂−1
q (0) which is a subgroup of Cq(K). Chains in

Zq(K) are called closed chains. If σq is a boundary

chain, i.e., the boundary of another chain, we write

σq ∼ 0. Define the boundary chain group Bq(K)
(which is a subgroup of Zq(K)) as

Bq(K) = {σq : σq ∼ 0} (2.5)

Two chains σ′
q, σ

′′
q are homologic if σ′

q − σ′′
q ∼ 0

and are written by σ′
q ∼ σ′′

q . In case the dimension of

K is k, we have Bk(K) = 0.

Definition 2.1 The homology group of a simpli-

cial complex K is the quotient group Hq(K) =
Zq(K)/Bq(K).

2.2 A Chain Membrane Model

Now we propose a membrane model based on chain

structures. Suppose O is the alphabet in the traditional

sense of membrane computing [19]. Now we define a

extended alphabet Θ which is composed of symbols

with positive and negative charges

Θ = {a+,− : a ∈ O} (2.6)

If a ∈ O, we will identify a with a+ that is posi-

tive charged for brevity. When two same symbols with

positive charge and negative charge meet, they will

annihilate, i.e., a+a− = λ. We will use x to represent

a multiset on extended alphabet Θ. For a positive inte-

ger g, we define xg as a new multiset with each sym-

bol from x amplifying g copies. For a ∈ O, define

a−1 = a−, a−1
− = a+. Also we define x−g = (x−1)g.

For two integers g1, g2, define xg1 ⊗ xg2 = xg1+g2 .

Now suppose there exist multisets xi ∈ τi where

τi ∈ Kq. In order to specify the host membrane of

multisets, we will use a new symbol [xi : τi]. For

a chain σq =
∑

i giτ
q
i ∈ Cq(K), a chain membrane

is defined as a collection of cells with multiplicities

and orientations. We will use the same symbol σq to

represent a chain membrane.

Definition 2.2 A chain multiset αq of dimension q is

a collection of charged multisets αq =
⊕

i[x
gi
i : τ qi ].

The collection of {αq} = Γq(Cq) is a group under the

operator ⊗ with identity element λ.

We can also define membrane structures corre-

sponding to the group Zq(K), Bq(K) and obtain mul-

tiset groups Γq(Zq),Γq(Bq). Now we consider the

homology group Hq(K). Similarly we get

Definition 2.3 The homology multiset group

Γq(Hq) is the quotient group Γq(Hq) =
Γq(Zq(K))/Γq(Bq(K)).

Now we consider the example as shown in Fig

2.1. For simplicity, we use, for example, 314 to rep-

resent the two dimensional cell a3a1a4. Hence the set

of two dimensional cells are

[

634 314 415
512 265 623

]

(2.7)

There are 12 edges and 6 vertices. By the face

relationship they form a lattice. as shown in Fig 2.2.

3 A Morse P System Model

In this section, we propose a Morse P system mod-

el based on the membrane structure described in Sec-

tion 2. We will assume that the graph G is the integer

group Z. K is a simplicial complex with dimension

k. K = {τ qi : i = 1, · · · , q = 0, · · · , k} is composed

of m simplices each of which is oriented. We only

assume that these simplices are oriented in some way.

The set {τ qi : i = 1, · · · , q = 0, · · · , k} is called the

base of K. Membrane corresponding to a base cell is

called a base membrane.

First we define the concept of links between sim-

plices with same dimension, say, in Kq. If τ1, τ2 ∈ Kq

are incident, we say there is an upper link (channel)

between τ1, τ2. If τ1, τ2 are neighbors, we say there

is an lower link between them. An upper link is de-

noted by (τ1, τ2)
τ where τ is their (common) paren-

t, while lower link is written as (τ1, τ2)τ where τ is

their common hyperface. Upper link is also written

by (τ1, τ2)
U , while lower link is denoted by (τ1, τ2)L.

Links have no directions. Thus (τ1, τ2) and (τ2, τ1)
are identical.

3.1 A Morse P System Model

Suppose K is a simplicial complex of dimension k.

For 0 ≤ q ≤ k, we use Gp to represent one of the

three groups Zp(K), Bq(K) and Hq(K), and we omit

the symbol K for simplicity. We use G to denote the

collection of groups

G = {G0,G1, · · · ,Gk} (3.1)

The multiset group Γq = Γq(Gq). And define Γ
by

Γ = {Γ0(G0),Γ1(G1), · · · ,Γk(Gk)} (3.2)

Definition 3.1 A Morse P system on a simplicial com-

plex K, with chain rules is a construct

Π = (O,Θ,G ,Γ,Ω,R,F ,Υ, i0) (3.3)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Xiyu Liu, Jie Xue 

E-ISSN: 2224-2856 478 Volume 12, 2017



Figure 2.2: A membrane lattice structure.

Now we describe the construct Π in detail. Sim-

ilar to traditional P system, O is the alphabet without

charges, and Θ is the charged alphabet. G is the mem-

brane structure and Γ is the multiset structure. i0 is the

output signal. The symbol Ω is the initial configura-

tion of base membranes as follows:

Ω = {ωq,i ∈ Θ∗ : i = 1, · · · , q = 0, · · · , k} (3.4)

R = {R1, · · · , Rm} is the set of unitary sym-

port and antiport rules associated with each of the base

membranes, where m is the total number of simplices.

F = {F (i, j) : (i, j) ∈ Υ} is the set of binary rules

where Υ is the set of links. Υ ⊆ {(i, j)U , (i, j)L :
i, j ∈ {1, · · · ,m}}.

Now we consider the initial configuration of chain

membranes. For a chain membrane σq =
∑

i giτ
q
i

where τ qi are base membranes, the initial chain multi-

set is defined as

αq =
⊕

i

[ωgi
q,i : τ

q
i ] (3.5)

The chain multiset αq is called the induced chain

by base multisets. Therefore we can always obtain

an induced chain multiset whenever the base multisets

are indicated.

3.2 Rules of Morse P Systems

Now we describe the communication rules of chain P

systems. For our purpose in this paper, there are main-

ly four types of communication rules in a simplicial P

system. Each type of rules has target one or more of

the four operators out, in, up, down. It is important

to note that rules are executed on base membranes.

First we consider the rule set R = {Ri} where the

rules Ri act on a base membrane τ qi . If the dimension

of the current membrane is k, then there is no parent.

In the case when q < k, there may exists none, unique,

or multiple parents. Suppose one of the parents of

τ qi is τ q+1
i . Then symport rules on τ qi are (x, in) or

(x, out). Antiport rules are in the form (x, out; y, in).
To be specific, let τ1 ≺ τ . The antiport rule

[x, out; y, in|τ1 ≺ τ ] in τ1 means that exchanging

multiset x inside membrane τ1 with the multiset y
outside it (in τ ). The symport rule [x, out|τ1 ≺ τ ]
sends the multiset x outside τ1. The symport rule

[x, in|τ1 ≺ τ ] works similarly.

[x, out; y, in|τ1 ≺ τ ],
[x, out|τ1 ≺ τ ],
[y, in|τ1 ≺ τ ]

(3.6)

Next consider binary rule set F . First suppose

(τ1, τ2)
U
τ is an upper link where τ is the coface of

τ1, τ2. Clearly this coface (parent) is unique. A rule

like [(x, y), up]U means that the multiset x and y from

τ1 and τ2 transform into z and go up to their parent

τ . At the same time y in τ is transformed into u, v
and sent to τ1, τ2 respectively. This upper link rule in

Rτ (τ1, τ2) is shown as:

[(x, y), up; (u, v), in]U −→ [y, in; γ, down] (3.7)

An lower link rule in Rτ (τ1, τ2) may have the fol-

lowing forms

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Xiyu Liu, Jie Xue 

E-ISSN: 2224-2856 479 Volume 12, 2017



1

2

3

411

21

12

22

13

23

14

24

Figure 3.1: An example of upper link rules execution

on chain multisets.

[(x, y), down; (u, v), in]L −→ [z, in; y, up] (3.8)

Now suppose there are two chain membranes

σq
1 =

∑

i g1,iτ
q
1,i and σq

2 =
∑

i g2,iτ
q
2,i. The corre-

sponding chain multisets are αq
1 = ⊕i[ω

g1,i
q,i : τ q1,i]

and αq
2 = ⊕i[ω

g2,i
q,i : τ q2,i] When upper link rules ac-

t on them, we must select incident pairs of the base

membranes. Then the multisets change according to

the rules associated to the base membranes. Fig 3.1

shows an example of rules acting on chains.

3.3 Configurations and Computations

Now we describe the configurations and computation-

s of chain P systems. A configuration of a chain P

system is the state of the system described by spec-

ifying the objects and rules associated to each base

membrane. The initial state is called initial configu-

ration. Therefore, the multisets represented by Ω =
{ωq,i, 1 ≤ i ≤ ...Iq, 0 ≤ q ≤ k} in Π, constitute the

initial configuration of the system.

The system evolves by applying rules in the base

membranes and this evolution is called computation.

The computation starts with the multisets specified by

the base membranes. Chain membrane obtain chain

multiset as configuration automatically. In each time

unit, rules are used in a cell. If no rule is applicable

for a cell, then no object changes in it. The system is

synchronously evolving for all cells.

When the system has reached a configuration in

which no rule is any longer applicable, we say that the

computation halts. A configuration is stable if, even if

some rules are still applicable, their application does

not change the object content of the membranes. The

computation is successful if and only if it halts, or it

is stable. The result of a halting/stable computation

is the number described by the multiplicity of objects

present in the cell i0 in the halting/stable configura-

tion.

4 Computation Analysis of Morse P

Systems

In this section, we will prove that the Morse P sys-

tem is computational complete by means of simula-

tion of register machines. Register machines which

compute all sets of numbers are Turing computable.

They characterize recursively enumerable language

(RE). Therefore, register machines are computational

complete. By a successful simulation of register ma-

chines we can show that the proposed Morse P system

is computational complete as well.

A register machine is a construct M =
(m,H, l0, lh, I) where m is the number of registers,

H is the set of instruction labels, l0 is the start label,

lh is the halt label (assigned to instruction HALT), and

I is the set of instructions. Each label from the label

set H labels only one instruction of I [22]. Therefore

a unique identification between H and I exists. An

instruction from the instruction set I can have one of

the following forms:

li : [ADD(r), lj , lk] (add one to register r and

then go to one of the instructions with labels lj , lk
non-deterministically chosen);

li : [SUB(r), lj , lk] (if register r is non-empty,

then subtract one from r and go to the instruction with

label lj , otherwise go to the instruction with label lk);

lh: HALT (the halt instruction).

A register machine M generates a subset N(M)
of N in the following way. First M starts with all

registers empty. Then we execute the instruction with

label l0 and proceed to apply instructions as indicat-

ed by the labels (and as made possible by the con-

tents of registers). If M reaches the halting instruc-

tion while containing the number n in the first regis-

ter, then n is an element of N(M) [4]. Deterministic

counter machines with ADD instructions of the form

li : [ADD(r), lj ] working in the accepting mode are

known to be equivalent with Turing machines.

Consider an arbitrary deterministic register ma-

chine M = (m,H, l0, lh, I). A Morse P system for

simulating the register machine M is a construct:

Π = (O,Θ,G ,Γ,Ω,R,F ,Υ, i0) (4.1)

An integer c in the register machine is denoted by

ac+ in the P system. We consider a Morse P system

of degree 3 to simulate an add instruction. We put

the initial object a+ or a− into the start label l0 which

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Xiyu Liu, Jie Xue 

E-ISSN: 2224-2856 480 Volume 12, 2017



contains an ADD or SUB instruction. The membrane

structure is ([]li , []lj ) ≺ []r, where []li is the membrane

of ADD instruction li. Membrane []r represents the

register machine r. Membrane []lj and []lk stand for

instructions lj and lk.

The set of rules R consists of the following.

R1 = [a+, out; a+, in|li ≺ r]

R2 = [(λ, λ), up; (λ, a+), in]
U

→ [λ, in;λ, down|(li, lj) ≺ r]
R3 = [(λ, λ), up; (λ, a−), in]

U

→ [λ, in;λ, down|(li, lj) ≺ r]
R2 and R3 represent instruction lj with ADD and

SUB instruction respectively. The initial instruction

labeled with l0 is an ADD instruction. Assume that

we are in a step when we simulate an instruction

li : [ADD(r), lj ], with a+ present in membrane li
and no objects in any other membranes, except those

objects associated with registers. Since we have a+
inside, li gets rule R1 triggered. Therefore one a+ is

added to the register r. Now we consider the case

when lj is an ADD instruction. Then the rule R2

executes subsequently. The two membrane li and lj
will communicate with register r. Therefore the con-

tents of lj are {a+}. Rules associated with instruction

lj will be initiated next. In this way, the number of

copies of a+ contained in the membrane []r is identi-

cal to the counter number of register machine r. Simi-

larly in the case when lj is a SUB instruction, then the

instruction R3 will executes instead. And the contents

of lj are {a−}, which will trigger SUB instruction lj .
Next we use a Morse P system of degree 4 to sim-

ulate a sub instruction. Suppose the initial object is a−
in li. The membrane structure is designed as follows.

{

([]li , []lj ) ≺ []r
[]li , ([]li , []lk) ≺ []r

(4.2)

In the equation we use []li to denote the membrane

of sub instruction li. Membrane []r represents register

machine r. Membrane []lj and []lk stand for instruc-

tions lj and lk.

The set of rules R consists of the following.

R1 = [a−, out; a−, in|li ≺ r]

R2 = [(λ, λ), up; (λ, a+), in]
U

→ [a+, in; a+, down|(li, lj) ≺ r]
R3 = [(λ, λ), up; (λ, a+), in]

U

→ [λ, in;λ, down|(li, lj) ≺ r]
R4 = [(λ, λ), up; (λ, a−), in]

U

→ [a+, in; a+, down|(li, lj) ≺ r]
R5 = [(λ, λ), up; (λ, a−), in]

U

→ [λ, in;λ, down|(li, lj) ≺ r]
R6 = [(λ, λ), up; (λ, a+), in]

U

→ [λ, in; a−, down|(li, lk) ≺ r]
R7 = [(λ, λ), up; (λ, a−), in]

U

→ [λ, in; a−, down|(li, lk ≺ r)]

Priority: R2 ≻ R3, R4 ≻ R5

Now we simulate an instruction li :
[SUB(r), lj , lk], with a− present in membrane

li. Initially the simulation starts by R1. With the

execution of R1 the membrane r loses one object.

One object a− appears in membrane r as a+a− → λ.

If the number c stored in the register represented

by membrane []r is greater than one, then rule R2

executes. In the case when c = 1, the rule R3 will be

activated instead. The priority rule R2 ≻ R3 ensures

that the stored number c will be always positive. The

rules R4 and R5 have the same function as R2 and

R3. However, they will be used for rules in lj . R2 and

R3 are executed in the condition that lj is an ADD

instruction, while R4 and R5 will be chosen when

lj is a SUB instruction. If c = 0 and lk is an ADD

instruction, R6 will be triggered and rules in lk will

be executed subsequently. Otherwise, c = 0 and lk is

a SUB instruction, and R7 is triggered.

5 Boltzmann Machines by Morse P

Systems

A Boltzmann machine consists of a graph K =
(V,E) with N nodes V = {v1, · · · , vN} and the set of

edges E [9]. The state of each node vi at discrete time

t is denoted by xi(t) which takes 0, 1 as values. A

connection strength wij which is a real number is set

upon each edge vivj . The graph may not be complete,

and self loops are permitted. If we define wij = 0
when there exists no edge between vi and vj , then the

graph K is extended to a complete graph. The ma-

trix W = [wij ]N×N is then a symmetric connection

strength matrix. Therefore we will assume K is com-

plete in the following. For the purpose of this paper,

we will assume that the members of W are integers

and define Ns as

Ns =

N
∑

j=1

wsj − wss (5.1)

The consensus function to be maximized is given

by

C(t) =
∑

1≤i,j≤N

wijxi(t)xj(t) (5.2)

Write X(t) = [x1(t), · · · , xN (t)]T as the state

variable. In asynchronous parallelism, when X(t)
moves to X(t + 1), only one vertex is changes. We

denote by vp the changing vertex. Then difference of

consensus is given by

∆C(t) = C(t+ 1)− C(t)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Xiyu Liu, Jie Xue 

E-ISSN: 2224-2856 481 Volume 12, 2017



= [1− 2xp(t)]



wpp +
∑

j 6=p

wpjxj(t)





Now we define temperature T (t) and acceptance

probability in the case of ∆C(t) < 0 with an initial

probability P0 (Often P0 is chosen as 1/N and is a

constant).

P (t) =
P0

1 + e−∆C(t)/T (t)
(5.3)

This can be implemented by a randomized value

rand(0, 1) and

Accept X(t+1)















always, if ∆C(t) ≥ 0
provided

P (t) > rand(0, 1),
if ∆C(t) < 0

(5.4)

Let the initial temperature is T0. Then the tem-

perature T (t) at time t is

T (t) =
T0

1 + log(1 + t)
(5.5)

Now let r be a random variable in (0, 1). It is easy

to see that Equation (??) is equivalent to the following

if we choose P0 = 1/N (in the case of ∆C(t) < 0):

|∆C(t)| < max{0,
T0 log(

1
rN − 1)

1 + log(1 + t)
} (5.6)

Moreover, Equation (5.7) is equivalent (in all cas-

es, ∆C(t) ≥ 0 and ∆C(t) < 0):

∆C(t) > −max{0,
T0 log(

1
rN − 1)

1 + log(1 + t)
} (5.7)

Now we use the same symbol K to denote the

simplicial complex with the graph K. Then we con-

struct the groups Zq, Bq and Hq for q = 0, 1, · · · , N
with a group G = R where R is the additive group of

real numbers. The base simplices are

{τ1, · · · , τN} ∪ {τij : 1 ≤ i, j ≤ N, i < j} (5.8)

Consider the P system

Π = (O,Θ,G ,Γ,Ω,R,F ,Υ, i0) (5.9)

where the number of edges (links) are m = 1
2N(N +

1), Ω = {ωi, ωij} are initial configurations of base

simplices of vertices and edges, R = {Ri} are rules

on node base membranes τi, F = {Fij} are rules on

edge membranes (links), Υ is the set of links, i0 = 1
indicates the output node.

Now we define the alphabet as follows

O = {a1, · · · , aN} ∪ {a+, a−}
∪{a, b+, b−, c, u, v}
∪{δ, δs, δp, δ+, δ−, δ0, β, γ, γ+}
∪{π, π0, πc, πh, πσ}

(5.10)

The symbol ai is a variable taking only two val-

ues, a+ and a−, indicating that the state of the corre-

sponding vertex is on or off (value 1,0 respectively).

As initialization we set vertex v1 as the running ver-

tex, and hence the initial configurations of node cells

are

{

ω1 = {a1v} ∪ {δs, δ
N−1, δ20 , γ

N−1
+ }

ωi = {ai} ∪ {δ, β}, i > 1
(5.11)

As initialization we set ai = a+ or a− randomly. The

initial configuration on edges are empty strings ωij =
{λ}.

5.1 Chain Rules of Boltzmann Machine

All the rules are categorized as several groups. The

first group is annihilation rules acting on node cells

F0 =



































































































































r00 : b
−1
+ b+ → λ

r01 : [τs, τ1] → [τs, τ1]|
(δ0δ

2
+, λ) → (δ0b

2
+, λ)

≻ (δ0δ+, λ) → (b+, c)
≻ (δ0, λ) → (λ, c)

r02 : [τs, τ1] → [τs, τ1]|

(δ0δ
−2
+ , λ) → (δ0b

−2
+ , λ)

≻ (δ0δ
−1
+ , λ) → (b−1

+ , c)
≻ (δ0, λ) → (λ, c)

r020 : τ1 → τ1|δ0δ
±2
+ → δ0b

±2
+

≻ δ0δ
±1
+ → b±1

+ c ≻ δ0 → c
r03 : τs → τs|βδ+δ+ → βδ+

≻ [τs, τ1] → [τs, τ1]|
(βδ+, λ) → (λ, c)

r04 : τs → τs|βδ
−1
+ δ−1

+ → βδ−1
+

≻ [τs, τ1] → [τs, τ1]|

(βδ−1
+ , λ) → (λ, c)

r05 : τ1 → τ1|βδ
±1
+ → c

(5.12)

We also have a set of rules acting on node cells

manipulating self loops. Suppose n is a positive inte-

ger, define an integer p as follows

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Xiyu Liu, Jie Xue 

E-ISSN: 2224-2856 482 Volume 12, 2017



p(n, t) = max{0,

[

T0 log(
A
nN − 1)

1 + log(1 + t)

]

} (5.13)

F01 =



































r011 : [τs, τ1] → [τs, τ1]|

(vδs, λ) → (δpb
(1−2as)wss

+ γ, cuv)
r012 : [τs, τ1] → [τs, τ1]|

(δp, u
nvt) → (b

p(n,t)
+ , cunvt),

n, t are maximal

r013 : τ1 → τ1|u
A → u

(5.14)

The second group is on chain edge rules.

F1 =

{

r11 : τij → [τi, τj ]|

a±wij → [δ
±wij

+ , δ
±wij

+ ]
(5.15)

The third group is rules on nodes by links where

a chain wijτij is used.

F2 =







































rU21 : [τs, τi] → [τs, τsi, τi]|

(δγ+a+, δ) → (γ, a(1−2as)wsi , λ)
(δγ+a−, δ) → (γ, λ, λ)

rU22 : [τi, τs] → [τi, τis, τs]|

(δ, δγ+a+) → (λ, a(1−2as)wis , γ)
(δ, δγ+a−) → (λ, λ, γ)

(i 6= s)
(5.16)

Finally we consider controlling rules. The fourth

group of rules control the active node of the neural

network. These rules act on node cells.

F3 =















































r→31 :
[τ1, τ2] → [τ1, τ2]|

(πcγ
N , λ) → (δβ, δsδ

N−1δ20γ
N−1
+ v) ≻

τi → τi(i > 2)|ai → aiδβ
r→32 :

[τs, τs+1] → [τs, τs+1], 1 < s < N |

(γNπc, λ) → (δβ, δsδ
N−1δ20γ

N−1
+ v) ≻

τj → τj(j 6= s, s+ 1)|aj → ajδβ
(5.17)

Now we discuss computation and halting condi-

tions. The main idea is using a symbol π0 to count the

number of running nodes in one cycle and compute

the number of stable nodes. When the number of sta-

ble nodes equals N , then the whole network is stable.

We can send a symbol πh to output node σ1. Notice

that rules are executed in an order.

F4 =



































































r→41 : τs → τs|

δ0 → π, b+b
−1
+ → λ ≻ r42

r→42 : τs → τs|

b+b+ → b+, b
−1
+ b−1

+ → b−1
+ ≻ r420

r420 : τs → τs|b+πas → âs ≻ r43
r→43 : [τs, τ1] → [τs, τ1]|(π, λ) → (λ, π0)
r→44 : τ1 → τ1|π

N
0 c → πh(halt)

r→45 : τ1 → τ1|cc → c ≻
[τ1, τs] → [τ1, τs]|(continue)

(πx
0 c, γ

N ) → (πσ, γ
Nπc), x < N

(5.18)

Here the symbol âs means that inverse as, i.e.,

as = 1 − as. Loop controlling rules are listed as F5.

If we found a symbol πh in σ1, then the computation

is complete.

F5 =







r→51 : [τN , τ1] → [τN , τ1]|

(γN−1πc, λ) → (δβ, vδsδ
N−1δ20γ

N−1
+ ),

τi → τi(i 6= 1, N)|ai → aiδβ
(5.19)

The total number of loops is written in the symbol

πσ.

5.2 Configurations and Computations

Now we explain the process of computation in detail.

We use i0 = 1 to note the output cell. For initial

configuration, the multisets of edges are {λ} and the

node cells have the following multisets.

{a1vδsδ
N−1δ20γ

N−1
0 , a2δβ, · · · , αNδβ} (5.20)

The the running node of the neural network is s =
1. To illustrate the process more clearly, we assume

that the current running node is s = 2 after the first

round of running for s = 1. In the first node cell, the

symbol πσ notes the number of running rounds for the

network. Hence the current configuration is

{a1uvδβπσ, a2δsδ
N−1δ20γ

N−1
0 , a3δβ, · · · , aNδβ}

(5.21)

Now for each 1 ≤ i ≤ N and i 6= 2 we run the

rules in F2 and the node cells are

{a1βπσuv, a2δsδ
2
0γ

N−1, a3β, · · · , aNβ} (5.22)

At the same time the edge cells σ2i for 1 ≤ i ≤
N, i 6= 2 are

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Xiyu Liu, Jie Xue 

E-ISSN: 2224-2856 483 Volume 12, 2017



{a2a
(1−2a2)w21 , λ, a2a

(1−2a2)w23 , · · · , a2a
(1−2a2)w2N }

(5.23)

Next we run the rules in F01 and the edge cells

remains the same while the node cells are

{a1βπσcu
2v2, a2δ

2
0γ

Nb
(1−2a2)w22

+ bp+, a3β, · · · , αNβ}
(5.24)

The next step is to run F1 on edges and the edge

cells change into empty multisets and these states re-

main till the end of this round. At the same time the

node cells are

{a1βπσcu
2v2δ±w12

+ ,

a2δ
2
0γ

Nb±w22

+ δ±w12

+ δ±w23

+ · · · δ±w2N
+ bp+,

a3βδ
±w23

+ , · · · , aNβδ±w2N
+ }

(5.25)

Now we run rules

{r01, r02, r020, r03, r04, r05, r00} in F0 and count

the number of c in τ1.

{a1πσc
N+1u2v2, a2γ

Nδ0b
0,±1
+ , a3, · · · , αN} (5.26)

Now we check if there exists one remaining b+
and if the answer is yes, then we accept this step and

let the status of a2 be inverted:

{a1πσc
N+1πx

0u
2v2, a2γ

N , a3, · · · , αN} (5.27)

Actually in one round of running we only accept

one possible inverted node. In the case of none invert-

ed node, we obtain a stable node which is noted by

the symbol π0. If after all the N nodes are processed

we obtain πN
0 stable nodes, then the network is stable.

We then send a symbol πh to the output node the com-

putation is complete. Otherwise we send a continuing

symbol πc to σ1 and continue to the next step. The

function of rules F3 and F5 is to control the running

of current node to the next node.

Computation is listed in Table 5.1 as an algorithm.

The next figure (Fig 5.1) illustrate the whole com-

putation process when N = 4 and i = 2.

6 Cluster Analysis by Morse Mem-

brane Boltzmann Machines

In this section we will present an example of clus-

ter analysis to show the effectiveness of the proposed

Morse membrane Boltzmann machines. The data set

to be clustered is chosen from the Euclidean space Rn.

Table 5.1: A chain membrane Boltzmann algorithm

Inputs: O,Θ,G ,Γ,Ω,F ,Υ, i0

Outputs: Stable status.

Begin

Set t = 1, u = 1, running node s = 1, a large integer A,

initial temperature T0.

while ( condition ) do

for s = 1 to N

if ( u > A ) set u = 1
end

r = u/A;u = u + 1; p =

max{0,

[

T0 log(
1

rN
− 1)

1 + log(1 + t)

]

}

for i = 1 to N

(1) Apply rules F2 = {rU21, r
U
22} on [τs, τsi, τi]

if i 6= s to compute consensus. (2) Apply

rules F01 = {r011, r012, r012} on [τs, τ1] for

i = s to compute consensus for self loop. Ad-

d comparison multiset by r012. (3) Apply rule

F1 = {r11} on τsi for i 6= s to send comput-

ing result to node cells. (4) Apply rules F0 =
{r00, r01, r02, r020, r03, r04, r05} on τs to sum-

marize result to computing node s. (5) Apply

rules F4 = {r41, r42, r420, r43} on τs to count

the number of stable nodes. (6) Apply control-

ling rules F4 = {r44, r45} on τ1, τs. (7) Ap-

ply loop controlling rules F3 = {r31, r32} on

τs, τs+1. (8) Apply loop controlling rule F5 = {r51}
to loop from s = N to s = 1.

end

end

t = t+ 1

end

End

We will use the nearest-neighbor clustering algorithm

which is a hierarchical clustering scheme. The idea of

the algorithm is to find a shortest path as the cluster-

ing result from a weighted connected undirected graph

K(V,E). This graph is generated from the data set ac-

cording to some criteria. This shortest path should be

chosen as minimal in length while it connects all the

vertices.

Whenever such a shortest path is found, this path

can be broken into several pieces by removing cer-

tain edges. Each piece will correspond to one clus-

ter. In this way, vertices belonging to the same cluster

will connect more closely. The edge removing criteria

is determined according to some predefined threshold

value. By this criteria, edges with weights beyond the

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Xiyu Liu, Jie Xue 

E-ISSN: 2224-2856 484 Volume 12, 2017



3 2 3

2 0sa v 3
a

4
a

2 3

2 0sa 3a 4a

2 21 22{ , }U UF r r

2 23(1 2 )

2

a w
a a

22(1 2 )2 4

2 0
sa w pa b b 3a 4a

2 23(1 2 )

2

a w
a a

01 011 012 013
{ , , }F r r r

2322 12 242 4

2 0

ww w w pa b b 23

3

w
a 24

4

w
a

2322 12 244 4 0, 1

2 0 2 0

ww w w pa b b b b b a b 3a 4a

4 4

2 2a a 3a 4a

4

2 c
a 3a 4a

2
a 3 2 3

3 0sa v 4
a

2a
3 2 3

3 0sa v 4a

1
a

4 44
{ }F r

4 45{ }F r

1a uv

1a uv

2 12(1 2 )

2

a wa a

2 24(1 2 )

2

a w
a a

1 11{ }F r

0 01 02 020 03 04 05 00{ , , , , , , }F r r r r r r r

4 41 42 420 43{ , , , }F r r r r

3 31 32{ , }F r r

5 51{ }F r

2 2

1a cu v

2 12(1 2 )

2

a wa a

2 24(1 2 )

2

a wa a

122 2

1

w
a cu v

5 2 2

1a c u v

5 2 2

1 0

x
a c u v

2 2 2

1a u v

2 2 2

1a u v

2 2 2

1
a u v

Figure 5.1: A flow chart of chain P system rule execution.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Xiyu Liu, Jie Xue 

E-ISSN: 2224-2856 485 Volume 12, 2017



-5 0 5 10 15
-6

-4

-2

0

2

4

6

8

Figure 6.1: the shortest path of the 99 vertices

threshold will be cut off. In this way, the clustering

problem is transformed into a path finding combina-

torial problem.

Many well-known combinatorial optimization

problems can be solved by Boltzmann machines. The

clustering problem can also be directly mapped onto

the structure of a Boltzmann machine by proper cho-

sen of connections. Cost function can also be trans-

formed into the consensus function with the help of

specific strength definitions.

Now we proceed to construct a Boltzmann ma-

chine model to solve our clustering problem. In order

to simplify the problem settings, we assume that the

corresponding shortest path problem is a 0-1 integer

problem. The state of a vertex vi at time t is denoted

by xi. Let ωij be the connection strength of the edge

(vi, vj).
The consensus function to be constructed must

satisfy the condition that its maximal points will map

to shortest paths of the graph. In order to do this, the

consensus function will be designed as monotone with

respect to the path length. Therefore the strength vari-

ables are set to be negative −ωij . Finally the consen-

sus function is defined as follows:

Ct = −
∑

(vi,vj)∈E

ωijxixj (6.1)

In the above equation, E is a disjoint set of edges,

E = {(viµ, vjυ)|(i 6= j) ∧ (µ = (υ + 1) mod n)}.

Example one of the Morse P system based Boltz-

mann machine model for the clustering problem is

carried out for a data set with 99 patterns (Fig. 6.1).

Result for the clustering of a Morse P system based

Boltzmann machine is shown in Fig.6.3. The corre-

sponding results of data set is shown in Fig.6.2.

Next, we use the 5 and 6 dimensions of dataset

-5 0 5 10 15
-6

-4

-2

0

2

4

6

8

Figure 6.2: the clustering result of the data set

seeds ( Fig. 6.4 ) from the UC Irvine Machine Learn-

ing Repository to verify the effectiveness of our al-

gorithm. The dataset is an examined group com-

prised kernels belonging to three different varieties of

wheat: Kama, Rosa and Canadian, 70 elements each

with 7 attributes ( area A, perimeter P , compactness

C = 4 ∗ pi ∗A/P 2, length of kernel, width of kernel,

asymmetry coefficient, length of kernel groove) ran-

domly selected for the experiment. High quality visu-

alization of the internal kernel structure was detected

using a soft X-ray technique. Studies were conducted

using combine harvested wheat grain originating from

experimental fields, explored at the Institute of Agro-

physics of the Polish Academy of Sciences in Lublin.

The data set is used in clustering and classification fre-

quently. In our algorithm, seeds is grouped into three

clusters in Fig. 6.5. There are 21 patterns going to

a wrong cluster and 15 patterns missing. The correct

rate is 82.4%.

7 Conclusion

In this paper, a new kind of P system on chain struc-

ture is presented. We provide Morse membrane struc-

tures on complexes, objects with positive and nega-

tive charges and communication rules on chains. We

simulate the register machine successfully by using 3

membranes, 3 rules on add instruction and 4 mem-

branes, 7 rules on sub instruction. 5 parts of rules

are provided in the implementation of Boltzmann Ma-

chines. Cluster analysis on Morse P system based

Boltzmann Machines shows its effectiveness by two

examples.

Acknowledgements: The research was support-

ed by the Natural Science Foundation of China

(No.61472231,61170038,71071090). Other grants:

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Xiyu Liu, Jie Xue 

E-ISSN: 2224-2856 486 Volume 12, 2017



0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

1-9 10-19 20-29 30-39

40-49 50-59 60-69 70-79

90-9980-89

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Figure 6.3: Result for the clustering of a Morse P system based Boltzmann machine

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Xiyu Liu, Jie Xue 

E-ISSN: 2224-2856 487 Volume 12, 2017



201401202, 12YJA630152, 11CGLJ22.

References:

[1] Rozenberg G. Păun and A. Salomaa (eds.),

Handbook of Membrane Computing, Oxford U-

niversity Press, Cambridge, 2010.

[2] Xiangxiang Zeng, Tao Song, Xingyi Zhang and

Linqiang Pan, Performing Four Basic Arith-

metic Operations With Spiking Neural P Sys-

tems, IEEE transactions on nanoscience, 11:4,

2012, pp.366–374.

[3] Tao Song, Linqiang Pan and G. Păun, Asyn-

chronous spiking neural P systems with lo-

cal synchronization, Information Sciences, 219,

2012, pp.197-C207.

[4] Krithivasan Rama R. Kamala, Introduction to

Formal Languages, Automata Theory and Com-

putation, Pearson Education India, 2009.

[5] G. Păun and R. Păun, Membrane computing and

economics: numerical P systems, Fundamenta

Informaticae, 73(122), 2006, pp.213–227.

[6] Bogdan Aman and Gabriel Ciobanu, Be-

havioural Equivalences in Real-Time P Systems,

CMC14, Chisinau, Moldova, 2013, pp.49–62.

[7] H. Adorna, Gh. Păun and M. Prez Jimnez,

On Communication Complexity in Evolution-

Communication P systems, Romanian Journal

of Information Science and Technology, 13(2),

2010, pp.113–130.

[8] Ciprian Dragomir, Florentin Ipate, Savas Konur,

Raluca Lefticaru and Laurentiu Mierla, Model

Checking Kernel P Systems, CMC14, Chisinau,

Moldova, 2013, pp.131–152.

[9] E.H.L. Aarts and Jan H.M. Korst, Boltzmann

machines and their applications, Lecture Notes

in Computer Science, Volume 258, 1987, pp.34–

50.

[10] Cardona Mónica, M. Angels Colomer, Mario J.

Pérez-Jiménez, and Alba Zaragoza, Hierarchical

clustering with membrane computing, Comput-

ing and Informatics, vol.27(3+), 2008, pp.497–

513.

[11] Jianwen Feng, Jingyi Wang, Chen Xu, and Fran-

cis Austin, Cluster Synchronization of Non-

linearly Coupled Complex Networks via Pin-

ning Control, Discrete Dynamics in Nature

and Society, Volume 2011, Article ID 262349,

doi:10.1155/2011/262349.

[12] Forman Robin, Morse Theory for Cell Complex-

es, Advances in Mathematics, vol.134, 1998,

pp.90–145.

[13] D.H. Ackley, G.E. Hinton and T.J. Sejnowski,

A Learning Algorithm for Boltzmann Machines,

Cognitive Science, 9, 1985, pp.147.

[14] D.H. Ackley, G.E. Hinton and T.J. Sejnowski,

A learning algorithm for Boltzmann machine,

Cognitive Science, vol. 9, 1985, pp.147–169.

[15] J. Han and M. Kamber, Data Mining, Concepts

and Techniques, Higher Education Press, Mor-

gan Kaufmann Publishers, Beijing, 2002.

[16] Yusuke Hosoi, Yuta Taniguchi and Daisuke Ike-

da, Replacing Log-Based Profiles to Contex-

t Profiles and Its Application to Context-aware

Document Clustering, WSEAS Transactions on

Information Science and Applications, vol.11,

2014, pp.51–60.

[17] Z.H. Jiang, Introduction to Topology, Shanghai

Science and Technology Press, Shanghai, 1978.

[18] Păun Gheorghe, A quick introduction to mem-

brane computing, The Journal of Logic and Al-

gebraic Programming, vol.79, 2010, pp.291–

294.

[19] G. Păun, G. Rozenberg, and A. Salomaa, Mem-

brane Computing, Oxford University Press, New

York, 2010.

[20] J.H. Xiao, X.Y. Zhang and J. Xu, A membrane

evolutionary algorithm for DNA sequence de-

sign in DNA computing, Chinese Science Bul-

letin, vol.57:6, 2012, pp.698–706.

[21] Liping Zhang and Haibo Jiang, Impulsive Clus-

ter Anticonsensus of Discrete Multiagent Lin-

ear Dynamic Systems, Discrete Dynamics in Na-

ture and Society, vol.2012, Article ID 857561,

doi:10.1155/2012/857561.

[22] I. Korec, Small universal register machines, The-

or Comput Sci, 168, 1996, pp.267–301.

This document is typeset by LATEX

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Xiyu Liu, Jie Xue 

E-ISSN: 2224-2856 488 Volume 12, 2017



2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2
4.5

5

5.5

6

6.5

7

Figure 6.4: The 5 and 6 dimensions of data set seeds

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2
4.5

5

5.5

6

6.5

7

Figure 6.5: Clustering result of 5 and 6 dimensions of data set seeds

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Xiyu Liu, Jie Xue 

E-ISSN: 2224-2856 489 Volume 12, 2017




